Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
J Clin Oncol ; : JCO2302547, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635938

RESUMO

PURPOSE: Therapy-related myeloid neoplasm (t-MN) is a life-threatening complication of autologous peripheral blood stem cell transplantation (aPBSCT) for Hodgkin lymphoma (HL). Although previous studies have reported an association between clonal hematopoiesis (CH) in the infused PBSC product and subsequent post-aPBSCT risk of t-MN in patients with non-HL, information about patients with HL treated with aPBSCT is not available. METHODS: We constructed a retrospective cohort of 321 patients with HL transplanted at a median age of 34 years (range, 18-71). Targeted DNA sequencing of PBSC products performed for CH-associated or myeloid malignancy-associated genes identified pathogenic mutations in these patients. RESULTS: CH was identified in the PBSC product of 46 patients (14.3%) with most prominent representation of DNMT3A (n = 25), PPM1D (n = 7), TET2 (n = 7), and TP53 (n = 5) mutations. Presence of CH in the PBSC product was an independent predictor of t-MN (adjusted hazard ratio [aHR], 4.50 [95% CI, 1.54 to 13.19]). Notably all patients with TP53 mutations in the PBSC product developed t-MN, whereas none of the patients with DNMT3A mutations alone (without co-occurring TP53 or PPM1D mutations) did. Presence of TP53 and/or PPM1D mutations was associated with a 7.29-fold higher hazard of t-MN when compared with individuals carrying no CH mutations (95% CI, 1.72 to 30.94). The presence of TP53 and/or PPM1D mutations was also associated with a 4.17-fold higher hazard of nonrelapse mortality (95% CI, 1.25 to 13.87). There was no association between CH and relapse-related mortality. CONCLUSION: The presence of TP53 and/or PPM1D mutations in the PBSC product increases the risk of post-aPBSCT t-MN and nonrelapse mortality among patients with HL and may support alternative therapeutic strategies.

2.
J Pharmacol Exp Ther ; 388(2): 546-559, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37914412

RESUMO

Vesicants such as arsenicals and mustards produce highly painful cutaneous inflammatory and blistering responses, hence developed as chemical weapons during World War I/II. Here, using lewisite and sulfur mustard surrogates, namely phenylarsine oxide (PAO) and 2-chloroethyl ethyl sulfide (CEES), respectively, we defined a common underlying mechanism of toxic action by these two distinct classes of vesicants. Murine skin exposure to these chemicals causes tissue destruction characterized by increase in skin bifold thickness, Draize score, infiltration of inflammatory cells, and apoptosis of epidermal and dermal cells. RNA sequencing analysis identified ∼346 inflammatory genes that were commonly altered by both PAO and CEES, along with the identification of cytokine signaling activation as the top canonical pathway. Activation of several proinflammatory genes and pathways is associated with phosphorylation-dependent activation of heat shock protein 90α (p-HSP90α). Topical treatment with known HSP90 inhibitors SNX-5422 and IPI-504 post PAO or CEES skin challenge significantly attenuated skin damage including reduction in overall skin injury and clinical scores. In addition, highly upregulated inflammatory genes Saa3, Cxcl1, Ccl7, IL-6, Nlrp3, Csf3, Chil3, etc. by both PAO and CEES were significantly diminished by treatment with HSP90 inhibitors. These drugs not only reduced PAO- or CEES-induced p-HSP90α expression but also its client proteins NLRP3 and pP38 and the expression of their target inflammatory genes. Our data confirm a critical role of HSP90 as a shared underlying molecular target of toxicity by these two distinct vesicants and provide an effective and novel medical countermeasure to suppress vesicant-induced skin injury. SIGNIFICANCE STATEMENT: Development of effective and novel mechanism-based antidotes that can simultaneously block cutaneous toxic manifestations of distinct vesicants is important and urgently needed. Due to difficulties in determining the exact nature of onsite chemical exposure, a potent drug that can suppress widespread cutaneous damage may find great utility. Thus, this study identified HSP90 as a common molecular regulator of cutaneous inflammation and injury by two distinct warfare vesicants, arsenicals and mustards, and HSP90 inhibitors afford significant protection against skin damage.


Assuntos
Arsenicais , Substâncias para a Guerra Química , Gás de Mostarda , Humanos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Substâncias para a Guerra Química/toxicidade , Irritantes , Pele , Gás de Mostarda/toxicidade , Arsenicais/metabolismo , Arsenicais/farmacologia
3.
Cell Death Discov ; 9(1): 451, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086808

RESUMO

Sphingolipid metabolism is dysregulated in many cancers, allowing cells to evade apoptosis through increased sphingosine-1-phosphate (S1P) and decreased ceramides. Ceramidases hydrolyze ceramides to sphingosine, which is phosphorylated by sphingosine kinases to generate S1P. The S1P allows cells to evade apoptosis by shifting the equilibrium away from ceramides, which favor cell death. One tumor type that exhibits a shift in the sphingolipid balance towards S1P is glioblastoma (GBM), a highly aggressive brain tumor. GBMs almost always recur despite surgical resection, radiotherapy, and chemotherapy with temozolomide (TMZ). Understanding sphingolipid metabolism in GBM is still limited, and currently, there are no approved treatments to target dysregulation of sphingolipid metabolism in GBM. Carmofur, a derivative of 5-fluorouracil, inhibits acid ceramidase (ASAH1), a key enzyme in the production of S1P, and is in use outside the USA to treat colorectal cancer. We find that the mRNA for ASAH1, but not other ceramidases, is elevated in recurrent GBM. When TMZ-resistant GBM cells were treated with carmofur, decreased cell growth and increased apoptosis were observed along with cell cycle perturbations. RNA-sequencing identified decreases in cell cycle control pathways that were specific to TMZ-resistant cells. Furthermore, the transcription factor and G1 to S phase regulator, E2F8, was upregulated in TMZ-resistant versus parental GBM cells and inhibited by carmofur treatment in TMZ-resistant GBM cells, specifically. These data suggest a possible role for E2F8 as a mediator of carmofur effects in the context of TMZ resistance. These data suggest the potential utility of normalizing the sphingolipid balance in the context of recurrent GBM.

4.
Proc Natl Acad Sci U S A ; 120(49): e2315096120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011564

RESUMO

Hidradenitis suppurativa (HS) is a complex inflammatory skin disease with undefined mechanistic underpinnings. Here, we investigated HS epithelial cells and demonstrated that HS basal progenitors modulate their lineage restriction and give rise to pathogenic keratinocyte clones, resulting in epidermal hyperproliferation and dysregulated inflammation in HS. When comparing to healthy epithelial stem/progenitor cells, in HS, we identified changes in gene signatures that revolve around the mitotic cell cycle, DNA damage response and repair, as well as cell-cell adhesion and chromatin remodeling. By reconstructing cell differentiation trajectory and CellChat modeling, we identified a keratinocyte population specific to HS. This population is marked by S100A7/8/9 and KRT6 family members, triggering IL1, IL10, and complement inflammatory cascades. These signals, along with HS-specific proinflammatory cytokines and chemokines, contribute to the recruitment of certain immune cells during the disease progression. Furthermore, we revealed a previously uncharacterized role of S100A8 in regulating the local chromatin environment of target loci in HS keratinocytes. Through the integration of genomic and epigenomic datasets, we identified genome-wide chromatin rewiring alongside the switch of transcription factors (TFs), which mediated HS transcriptional profiles. Importantly, we identified numerous clinically relevant inflammatory enhancers and their coordinated TFs in HS basal CD49fhigh cells. The disruption of the S100A enhancer using the CRISPR/Cas9-mediated approach or the pharmacological inhibition of the interferon regulatory transcription factor 3 (IRF3) efficiently reduced the production of HS-associated inflammatory regulators. Our study not only uncovers the plasticity of epidermal progenitor cells in HS but also elucidates the epigenetic mechanisms underlying HS pathogenesis.


Assuntos
Hidradenite Supurativa , Humanos , Hidradenite Supurativa/genética , Pele/metabolismo , Epigenômica , Epigênese Genética , Células-Tronco/metabolismo , Cromatina/metabolismo
5.
Redox Biol ; 67: 102919, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37806112

RESUMO

Oxalate is a small compound found in certain plant-derived foods and is a major component of calcium oxalate (CaOx) kidney stones. Individuals that consume oxalate enriched meals have an increased risk of forming urinary crystals, which are precursors to CaOx kidney stones. We previously reported that a single dietary oxalate load induces nanocrystalluria and reduces monocyte cellular bioenergetics in healthy adults. The purpose of this study was to extend these investigations to identify specific oxalate-mediated mechanisms in monocytes and macrophages. We performed RNA-Sequencing analysis on monocytes isolated from healthy subjects exposed to a high oxalate (8 mmol) dietary load. RNA-sequencing revealed 1,198 genes were altered and Ingenuity Pathway Analysis demonstrated modifications in several pathways including Interleukin-10 (IL-10) anti-inflammatory cytokine signaling, mitochondrial metabolism and function, oxalic acid downstream signaling, and autophagy. Based on these findings, we hypothesized that oxalate induces mitochondrial and lysosomal dysfunction in monocytes and macrophages via IL-10 and reactive oxygen species (ROS) signaling which can be reversed with exogenous IL-10 or Mitoquinone (MitoQ; a mitochondrial targeted antioxidant). We exposed monocytes and macrophages to oxalate in an in-vitro setting which caused oxidative stress, a decline in IL-10 cytokine levels, mitochondrial and lysosomal dysfunction, and impaired autophagy in both cell types. Administration of exogenous IL-10 and MitoQ attenuated these responses. These findings suggest that oxalate impairs metabolism and immune response via IL-10 signaling and mitochondrial ROS generation in both monocytes and macrophages which can be potentially limited or reversed. Future studies will examine the benefits of these therapies on CaOx crystal formation and growth in vivo.


Assuntos
Cálculos Renais , Monócitos , Adulto , Humanos , Monócitos/metabolismo , Oxalatos , Espécies Reativas de Oxigênio/metabolismo , Interleucina-10/metabolismo , Oxalato de Cálcio/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Cálculos Renais/etiologia , Cálculos Renais/metabolismo , RNA
6.
J Am Heart Assoc ; 12(19): e029954, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37750583

RESUMO

Background Anthracycline-induced cardiomyopathy is a leading cause of premature death in childhood cancer survivors, presenting a need to understand the underlying pathogenesis. We sought to examine differential blood-based mRNA expression profiles in anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. Methods and Results We designed a matched case-control study (Children's Oncology Group-ALTE03N1) with mRNA sequencing on total RNA from peripheral blood in 40 anthracycline-exposed survivors with cardiomyopathy (cases) and 64 matched survivors without (controls). DESeq2 identified differentially expressed genes. Ingenuity Pathway Analyses (IPA) and Gene Set Enrichment Analyses determined the potential roles of altered genes in biological pathways. Functional validation was performed by gene knockout in human-induced pluripotent stem cell-derived cardiomyocytes using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) technology. Median age at primary cancer diagnosis for cases and controls was 8.2 and 9.7 years, respectively. Thirty-six differentially expressed genes with fold change ≥±2 were identified; 35 were upregulated. IPA identified "hepatic fibrosis" and "iron homeostasis" pathways to be significantly modulated by differentially expressed genes, including toxicology functions of myocardial infarction, cardiac damage, and cardiac dilation. Leading edge analysis from Gene Set Enrichment Analyses identified lactate dehydrogenase A (LDHA) and cluster of differentiation 36 (CD36) genes to be significantly upregulated in cases. Interleukin 1 receptor type 1, 2 (IL1R1, IL1R2), and matrix metalloproteinase 8, 9 (MMP8, MMP9) appeared in multiple canonical pathways. LDHA-knockout human-induced pluripotent stem cell-derived cardiomyocytes showed increased sensitivity to doxorubicin. Conclusions We identified differential mRNA expression profiles in peripheral blood of anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. Upregulation of LDHA and CD36 genes suggests metabolic perturbations in a failing heart. Dysregulation of proinflammatory cytokine receptors IL1R1 and IL1R2 and matrix metalloproteinases, MMP8 and MMP9 indicates structural remodeling that accompanies the clinical manifestation of symptomatic cardiotoxicity.


Assuntos
Sobreviventes de Câncer , Cardiomiopatias , Neoplasias , Humanos , Criança , Metaloproteinase 8 da Matriz/genética , Metaloproteinase 8 da Matriz/uso terapêutico , Metaloproteinase 9 da Matriz , Antraciclinas/efeitos adversos , Estudos de Casos e Controles , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/complicações , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Antibióticos Antineoplásicos/efeitos adversos , Miócitos Cardíacos , RNA Mensageiro , Expressão Gênica
7.
Front Med (Lausanne) ; 10: 1173674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538309

RESUMO

Background: Disease severity of autosomal dominant polycystic kidney disease (ADPKD) is influenced by diet. Dietary protein, a recognized cyst-accelerating factor, is catabolized into amino acids (AA) and delivered to the kidney leading to renal hypertrophy. Injury-induced hypertrophic signaling in ADPKD results in increased macrophage (MФ) activation and inflammation followed by cyst growth. We hypothesize that the cystogenesis-prompting effects of HP diet are caused by increased delivery of specific AA to the kidney, ultimately stimulating MФs to promote cyst progression. Methods: Pkd1flox/flox mice with and without Cre (CAGG-ER) were given tamoxifen to induce global gene deletion (Pkd1KO). Pkd1KO mice were fed either a low (LP; 6%), normal (NP; 18%), or high (HP; 60%) protein diet for 1 week (early) or 6 weeks (chronic). Mice were then euthanized and tissues were used for histology, immunofluorescence and various biochemical assays. One week fed kidney tissue was cell sorted to isolate tubular epithelial cells for RNA sequencing. Results: Chronic dietary protein load in Pkd1KO mice increased kidney weight, number of kidney infiltrating and resident MФs, chemokines, cytokines and cystic index compared to LP diet fed mice. Accelerated cyst growth induced by chronic HP were attenuated by liposomal clodronate-mediated MФ depletion. Early HP diet fed Pkd1KO mice had larger cystic kidneys compared to NP or LP fed counterparts, but without increases in the number of kidney MФs, cytokines, or markers of tubular injury. RNA sequencing of tubular epithelial cells in HP compared to NP or LP diet group revealed increased expression of sodium-glutamine transporter Snat3, chloride channel Clcnka, and gluconeogenesis marker Pepck1, accompanied by increased excretion of urinary ammonia, a byproduct of glutamine. Early glutamine supplementation in Pkd1KO mice lead to kidney hypertrophy. Conclusion: Chronic dietary protein load-induced renal hypertrophy and accelerated cyst growth in Pkd1KO mice is dependent on both infiltrating and resident MФ recruitment and subsequent inflammatory response. Early cyst expansion by HP diet, however, is relient on increased delivery of glutamine to kidney epithelial cells, driving downstream metabolic changes prior to inflammatory provocation.

8.
JCI Insight ; 8(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37643018

RESUMO

The role of aberrant glycosylation in pancreatic ductal adenocarcinoma (PDAC) remains an under-investigated area of research. In this study, we determined that ST6 ß-galactoside α2,6 sialyltransferase 1 (ST6GAL1), which adds α2,6-linked sialic acids to N-glycosylated proteins, was upregulated in patients with early-stage PDAC and was further increased in advanced disease. A tumor-promoting function for ST6GAL1 was elucidated using tumor xenograft experiments with human PDAC cells. Additionally, we developed a genetically engineered mouse (GEM) model with transgenic expression of ST6GAL1 in the pancreas and found that mice with dual expression of ST6GAL1 and oncogenic KRASG12D had greatly accelerated PDAC progression compared with mice expressing KRASG12D alone. As ST6GAL1 imparts progenitor-like characteristics, we interrogated ST6GAL1's role in acinar to ductal metaplasia (ADM), a process that fosters neoplasia by reprogramming acinar cells into ductal, progenitor-like cells. We verified ST6GAL1 promotes ADM using multiple models including the 266-6 cell line, GEM-derived organoids and tissues, and an in vivo model of inflammation-induced ADM. EGFR is a key driver of ADM and is known to be activated by ST6GAL1-mediated sialylation. Importantly, EGFR activation was dramatically increased in acinar cells and organoids from mice with transgenic ST6GAL1 expression. These collective results highlight a glycosylation-dependent mechanism involved in early stages of pancreatic neoplasia.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Neoplasias Pancreáticas/patologia , Pâncreas/patologia , Carcinoma Ductal Pancreático/patologia , Receptores ErbB/genética , Metaplasia/patologia , Sialiltransferases/genética , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Antígenos CD
9.
Sci Rep ; 13(1): 12683, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542143

RESUMO

Anthracycline-induced cardiomyopathy is a leading cause of late morbidity in childhood cancer survivors. Aberrant DNA methylation plays a role in de novo cardiovascular disease. Epigenetic processes could play a role in anthracycline-induced cardiomyopathy but remain unstudied. We sought to examine if genome-wide differential methylation at 'CpG' sites in peripheral blood DNA is associated with anthracycline-induced cardiomyopathy. This report used participants from a matched case-control study; 52 non-Hispanic White, anthracycline-exposed childhood cancer survivors with cardiomyopathy were matched 1:1 with 52 survivors with no cardiomyopathy. Paired ChAMP (Chip Analysis Methylation Pipeline) with integrated reference-based deconvolution of adult peripheral blood DNA methylation was used to analyze data from Illumina HumanMethylation EPIC BeadChip arrays. An epigenome-wide association study (EWAS) was performed, and the model was adjusted for GrimAge, sex, interaction terms of age at enrollment, chest radiation, age at diagnosis squared, and cardiovascular risk factors (CVRFs: diabetes, hypertension, dyslipidemia). Prioritized genes were functionally validated by gene knockout in human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) using CRISPR/Cas9 technology. DNA-methylation EPIC array analyses identified 32 differentially methylated probes (DMP: 15 hyper-methylated and 17 hypo-methylated probes) that overlap with 23 genes and 9 intergenic regions. Three hundred and fifty-four differential methylated regions (DMRs) were also identified. Several of these genes are associated with cardiac dysfunction. Knockout of genes EXO6CB, FCHSD2, NIPAL2, and SYNPO2 in hiPSC-CMs increased sensitivity to doxorubicin. In addition, EWAS analysis identified hypo-methylation of probe 'cg15939386' in gene RORA to be significantly associated with anthracycline-induced cardiomyopathy. In this genome-wide DNA methylation profile study, we observed significant differences in DNA methylation at the CpG level between anthracycline-exposed childhood cancer survivors with and without cardiomyopathy, implicating differential DNA methylation of certain genes could play a role in pathogenesis of anthracycline-induced cardiomyopathy.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Antraciclinas/efeitos adversos , Estudos de Casos e Controles , Estudo de Associação Genômica Ampla , Metilação de DNA , Epigênese Genética , DNA , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Ilhas de CpG , Antibióticos Antineoplásicos , Proteínas de Transporte/genética , Proteínas de Membrana/genética
10.
JACC CardioOncol ; 5(3): 392-401, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37397079

RESUMO

Background: Anthracycline-related cardiomyopathy is a leading cause of premature death in childhood cancer survivors. The high interindividual variability in risk suggests the need to understand the underlying pathogenesis. Objectives: The authors interrogated differentially expressed genes (DEGs) to identify genetic variants serving regulatory functions or genetic variants not easily identified when using genomewide array platforms. Using leads from DEGs, candidate copy number variants (CNVs) and single-nucleotide variants (SNVs) were genotyped. Methods: Messenger RNA sequencing was performed on total RNA from peripheral blood of 40 survivors with cardiomyopathy (cases) and 64 matched survivors without cardiomyopathy (control subjects). Conditional logistic regression analysis adjusting for sex, age at cancer diagnosis, anthracycline dose, and chest radiation was used to assess the associations between gene expression and cardiomyopathy and between CNVs and SNVs and cardiomyopathy. Results: Haptoglobin (HP) was identified as the top DEG. Participants with higher HP gene expression had 6-fold greater odds of developing cardiomyopathy (OR: 6.4; 95% CI: 1.4-28.6). The HP2-specific allele among the HP genotypes (HP1-1, HP1-2, and HP2-2) had higher transcript levels, as did the G allele among SNVs previously reported to be associated with HP gene expression (rs35283911 and rs2000999). The HP1-2 and HP2-2 genotypes combined with the G/G genotype for rs35283911 and/or rs2000999 placed the survivors at 4-fold greater risk (OR: 3.9; 95% CI: 1.0-14.5) for developing cardiomyopathy. Conclusions: These findings provide evidence of a novel association between HP2 allele and cardiomyopathy. HP binds to free hemoglobin to form an HP-hemoglobin complex, thereby preventing oxidative damage from free heme iron, thus providing biological plausibility to the mechanistic basis of the present observation.

11.
Blood ; 142(6): 574-588, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37192295

RESUMO

Tyrosine kinase inhibitors (TKIs) are very effective in treating chronic myelogenous leukemia (CML), but primitive, quiescent leukemia stem cells persist as a barrier to the cure. We performed a comprehensive evaluation of metabolic adaptation to TKI treatment and its role in CML hematopoietic stem and progenitor cell persistence. Using a CML mouse model, we found that glycolysis, glutaminolysis, the tricarboxylic acid cycle, and oxidative phosphorylation (OXPHOS) were initially inhibited by TKI treatment in CML-committed progenitors but were restored with continued treatment, reflecting both selection and metabolic reprogramming of specific subpopulations. TKI treatment selectively enriched primitive CML stem cells with reduced metabolic gene expression. Persistent CML stem cells also showed metabolic adaptation to TKI treatment through altered substrate use and mitochondrial respiration maintenance. Evaluation of transcription factors underlying these changes helped detect increased HIF-1 protein levels and activity in TKI-treated stem cells. Treatment with an HIF-1 inhibitor in combination with TKI treatment depleted murine and human CML stem cells. HIF-1 inhibition increased mitochondrial activity and reactive oxygen species (ROS) levels, reduced quiescence, increased cycling, and reduced the self-renewal and regenerating potential of dormant CML stem cells. We, therefore, identified the HIF-1-mediated inhibition of OXPHOS and ROS and maintenance of CML stem cell dormancy and repopulating potential as a key mechanism of CML stem cell adaptation to TKI treatment. Our results identify a key metabolic dependency in CML stem cells persisting after TKI treatment that can be targeted to enhance their elimination.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas Tirosina Quinases , Camundongos , Humanos , Animais , Proteínas Tirosina Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Neoplásicas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Resistencia a Medicamentos Antineoplásicos
12.
Front Immunol ; 14: 1082078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256130

RESUMO

Kidney macrophages are comprised of both monocyte-derived and tissue resident populations; however, the heterogeneity of kidney macrophages and factors that regulate their heterogeneity are poorly understood. Herein, we performed single cell RNA sequencing (scRNAseq), fate mapping, and parabiosis to define the cellular heterogeneity of kidney macrophages in healthy mice. Our data indicate that healthy mouse kidneys contain four major subsets of monocytes and two major subsets of kidney resident macrophages (KRM) including a population with enriched Ccr2 expression, suggesting monocyte origin. Surprisingly, fate mapping data using the newly developed Ms4a3Cre Rosa Stopf/f TdT model indicate that less than 50% of Ccr2+ KRM are derived from Ly6chi monocytes. Instead, we find that Ccr2 expression in KRM reflects their spatial distribution as this cell population is almost exclusively found in the kidney cortex. We also identified Cx3cr1 as a gene that governs cortex specific accumulation of Ccr2+ KRM and show that loss of Ccr2+ KRM reduces the severity of cystic kidney disease in a mouse model where cysts are mainly localized to the kidney cortex. Collectively, our data indicate that Cx3cr1 regulates KRM heterogeneity and niche-specific disease progression.


Assuntos
Macrófagos , Monócitos , Camundongos , Animais , Macrófagos/metabolismo , Monócitos/metabolismo , Rim/metabolismo , Receptores de Quimiocinas/metabolismo , Modelos Animais de Doenças , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo
13.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37040185

RESUMO

Viral illnesses like SARS-CoV-2 have pathologic effects on nonrespiratory organs in the absence of direct viral infection. We injected mice with cocktails of rodent equivalents of human cytokine storms resulting from SARS-CoV-2/COVID-19 or rhinovirus common cold infection. At low doses, COVID-19 cocktails induced glomerular injury and albuminuria in zinc fingers and homeoboxes 2 (Zhx2) hypomorph and Zhx2+/+ mice to mimic COVID-19-related proteinuria. Common Cold cocktail induced albuminuria selectively in Zhx2 hypomorph mice to model relapse of minimal change disease, which improved after depletion of TNF-α, soluble IL-4Rα, or IL-6. The Zhx2 hypomorph state increased cell membrane to nuclear migration of podocyte ZHX proteins in vivo (both cocktails) and lowered phosphorylated STAT6 activation (COVID-19 cocktail) in vitro. At higher doses, COVID-19 cocktails induced acute heart injury, myocarditis, pericarditis, acute liver injury, acute kidney injury, and high mortality in Zhx2+/+ mice, whereas Zhx2 hypomorph mice were relatively protected, due in part to early, asynchronous activation of STAT5 and STAT6 pathways in these organs. Dual depletion of cytokine combinations of TNF-α with IL-2, IL-13, or IL-4 in Zhx2+/+ mice reduced multiorgan injury and eliminated mortality. Using genome sequencing and CRISPR/Cas9, an insertion upstream of ZHX2 was identified as a cause of the human ZHX2 hypomorph state.


Assuntos
COVID-19 , Resfriado Comum , Humanos , Camundongos , Animais , Proteínas de Homeodomínio/genética , Albuminúria , Fator de Necrose Tumoral alfa , Síndrome da Liberação de Citocina , SARS-CoV-2/metabolismo , Fatores de Transcrição/genética
14.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36928191

RESUMO

Emerging data indicate an association between environmental heavy metal exposure and lung disease, including lower respiratory tract infections (LRTIs). Here, we show by single-cell RNA sequencing an increase in Pparg gene expression in lung macrophages from mice exposed to cadmium and/or infected with Streptococcus pneumoniae. However, the heavy metal cadmium or infection mediated an inhibitory posttranslational modification of peroxisome proliferator-activated receptor γ (PPARγ) to exacerbate LRTIs. Cadmium and infection increased ERK activation to regulate PPARγ degradation in monocyte-derived macrophages. Mice harboring a conditional deletion of Pparg in monocyte-derived macrophages had more severe S. pneumoniae infection after cadmium exposure, showed greater lung injury, and had increased mortality. Inhibition of ERK activation with BVD-523 protected mice from lung injury after cadmium exposure or infection. Moreover, individuals residing in areas of high air cadmium levels had increased cadmium concentration in their bronchoalveolar lavage (BAL) fluid, increased barrier dysfunction, and showed PPARγ inhibition that was mediated, at least in part, by ERK activation in isolated BAL cells. These observations suggest that impaired activation of PPARγ in monocyte-derived macrophages exacerbates lung injury and the severity of LRTIs.


Assuntos
Lesão Pulmonar , PPAR gama , Camundongos , Animais , PPAR gama/metabolismo , Pulmão/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Macrófagos Alveolares/metabolismo
15.
Sci Rep ; 13(1): 2137, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747074

RESUMO

Streptococcus agalactiae, also known as Group B Streptococcus (GBS) is a frequent cause of infections, including bacteraemia and other acute diseases in adults and immunocompromised individuals. We developed a novel system to study GBS within human monocytes to define the co-transcriptome of intracellular GBS (iGBS) and host cells simultaneously using dual RNA-sequencing (RNA-seq) to better define how this pathogen responds to host cells. Using human U937 monocytes and genome-sequenced GBS reference strain 874,391 in antibiotic protection assays we validated a system for dual-RNA seq based on measures of GBS and monocyte viability to ensure that the bacterial and host cell co-transcriptome reflected mainly intracellular (iGBS) rather than extracellular GBS. Elucidation of the co-transcriptome revealed 1119 dysregulated transcripts in iGBS with most genes, including several that encode virulence factors (e.g., scpB, hvgA, ribD, pil2b) exhibiting activation by upregulated expression. Infection with iGBS resulted in significant remodelling of the monocyte transcriptome, with 7587 transcripts differentially expressed including 7040 up-regulated and 547 down-regulated. qPCR confirmed that the most strongly activated genes included sht, encoding Streptococcal Histidine Triad Protein. An isogenic GBS mutant strain deficient in sht revealed a significant effect of this gene on phagocytosis of GBS and survival of the bacteria during systemic infection in mice. Identification of a novel contribution of sht to GBS virulence shows the co-transcriptome responses elucidated in GBS-infected monocytes help to shape the host-pathogen interaction and establish a role for sht in the response of the bacteria to phagocytic uptake. This study provides comprehension of concurrent transcriptional responses that occur in GBS and human monocytes that shape the host-pathogen interaction.


Assuntos
Monócitos , Infecções Estreptocócicas , Adulto , Humanos , Camundongos , Animais , Monócitos/metabolismo , Streptococcus agalactiae , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/microbiologia , RNA-Seq , Fagocitose/genética , Interações Hospedeiro-Patógeno/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
16.
Sci Rep ; 13(1): 3394, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854738

RESUMO

Millions of traumatic brain injuries (TBIs) occur annually. TBIs commonly result from falls, traffic accidents, and sports-related injuries, all of which involve rotational acceleration/deceleration of the brain. During these injuries, the brain endures a multitude of primary insults including compression of brain tissue, damaged vasculature, and diffuse axonal injury. All of these deleterious effects can contribute to secondary brain ischemia, cellular death, and neuroinflammation that progress for weeks, months, and lifetime after injury. While the linear effects of head trauma have been extensively modeled, less is known about how rotational injuries mediate neuronal damage following injury. Here, we developed a new model of repetitive rotational head trauma in rodents and demonstrated acute and prolonged pathological, behavioral, and electrophysiological effects of rotational TBI (rTBI). We identify aberrant Cyclin-dependent kinase 5 (Cdk5) activity as a principal mediator of rTBI. We utilized Cdk5-enriched phosphoproteomics to uncover potential downstream mediators of rTBI and show pharmacological inhibition of Cdk5 reduces the cognitive and pathological consequences of injury. These studies contribute meaningfully to our understanding of the mechanisms of rTBI and how they may be effectively treated.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos Craniocerebrais , Quinase 5 Dependente de Ciclina , Animais , Ratos , Encéfalo , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Traumatismos Craniocerebrais/genética , Traumatismos Craniocerebrais/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo
17.
Leukemia ; 37(3): 560-570, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36550214

RESUMO

Fms-like tyrosine kinase 3 (Flt3) tyrosine kinase inhibitors (Flt3-TKI) have improved outcomes for patients with Flt3-mutated acute myeloid leukemia (AML) but are limited by resistance and relapse, indicating persistence of leukemia stem cells (LSC). Here utilizing a Flt3-internal tandem duplication (Flt3-ITD) and Tet2-deleted AML genetic mouse model we determined that FLT3-ITD AML LSC were enriched within the primitive ST-HSC population. FLT3-ITD LSC showed increased expression of the CXCL12 receptor CXCR4. CXCL12-abundant reticular (CAR) cells were increased in Flt3-ITD AML marrow. CXCL12 deletion from the microenvironment enhanced targeting of AML cells by Flt3-TKI plus chemotherapy treatment, including enhanced LSC targeting. Both treatment and CXCL12 deletion partially reduced p38 mitogen-activated protein kinase (p38) signaling in AML cells and further reduction was seen after treatment in CXCL12 deleted mice. p38 inhibition reduced CXCL12-dependent and -independent maintenance of both murine and human Flt3-ITD AML LSC by MSC and enhanced their sensitivity to treatment. p38 inhibition in combination with chemotherapy plus TKI treatment leads to greater depletion of Flt3-ITD AML LSC compared with CXCL12 deletion. Our studies support roles for CXCL12 and p38 signaling in microenvironmental protection of AML LSC and provide a rationale for inhibiting p38 signaling to enhance Flt3-ITD AML targeting.


Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Animais , Humanos , Camundongos , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Sistema de Sinalização das MAP Quinases , Mutação , Transdução de Sinais , Células-Tronco/metabolismo , Microambiente Tumoral , Proteínas Quinases p38 Ativadas por Mitógeno
18.
JCI Insight ; 8(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36413413

RESUMO

Despite the efficacy of tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML), malignant long-term hematopoietic stem cells (LT-HSCs) persist as a source of relapse. However, LT-HSCs are heterogenous and the most primitive, drug-resistant LT-HSC subpopulations are not well characterized. In normal hematopoiesis, self-renewal and long-term reconstitution capacity are enriched within LT-HSCs with low c-Kit expression (c-KITlo). Here, using a transgenic CML mouse model, we found that long-term engraftment and leukemogenic capacity were restricted to c-KITlo CML LT-HSCs. CML LT-HSCs demonstrated enhanced differentiation with expansion of mature progeny following exposure to the c-KIT ligand, stem cell factor (SCF). Conversely, SCF deletion led to depletion of normal LT-HSCs but increase in c-KITlo and total CML LT-HSCs with reduced generation of mature myeloid cells. CML c-KITlo LT-HSCs showed reduced cell cycling and expressed enhanced quiescence and inflammatory gene signatures. SCF administration led to enhanced depletion of CML primitive progenitors but not LT-HSCs after TKI treatment. Human CML LT-HSCs with low or absent c-KIT expression were markedly enriched after TKI treatment. We conclude that CML LT-HSCs expressing low c-KIT levels are enriched for primitive, quiescent, drug-resistant leukemia-initiating cells and represent a critical target for eliminating disease persistence.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Animais , Humanos , Camundongos , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos Transgênicos , Fator de Células-Tronco/metabolismo
19.
JACC CardioOncol ; 5(6): 807-818, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205005

RESUMO

Background: Anthracyclines are highly effective in treating cancer, albeit with increased cardiomyopathy risk. Although risk is attributed to associations with single nucleotide polymorphisms (SNPs), multiple SNPs on a gene and their interactions remain unexamined. Objectives: This study examined gene-level associations with cardiomyopathy among cancer survivors using whole-exome sequencing data. Methods: For discovery, 278 childhood cancer survivors (129 cases; 149 matched control subjects) from the COG (Children's Oncology Group) study ALTE03N1 were included. Logic regression (machine learning) was used to identify gene-level SNP combinations for 7,212 genes and ordinal logistic regression to estimate gene-level associations with cardiomyopathy. Models were adjusted for primary cancer, age at cancer diagnosis, sex, race/ethnicity, cumulative anthracycline dose, chest radiation, cardiovascular risk factors, and 3 principal components. Statistical significance threshold of 6.93 × 10-6 accounted for multiple testing. Three independent cancer survivor populations (COG study, BMTSS [Blood or Marrow Transplant Survivor Study] and CCSS [Childhood Cancer Survivor Study]) were used to replicate gene-level associations and examine SNP-level associations from discovery genes using ordinal logistic, conditional logistic, and Cox regression models, respectively. Results: Median age at cancer diagnosis for discovery cases and control subjects was 6 years and 8 years, respectively. Gene-level association for P2RX7 (OR: 0.10; 95% CI: 0.04-0.27; P = 2.19 × 10-6) was successfully replicated (HR: 0.65; 95% CI: 0.47-0.90; P = 0.009) in the CCSS cohort. Additional signals were identified on TNIK, LRRK2, MEFV, NOBOX, and FBN3. Individual SNPs across all discovery genes, except FBN3, were replicated. Conclusions: In our study, SNP sets having 1 or no copies of P2RX7 variant alleles were associated with reduced risk of cardiomyopathy, presenting a potential therapeutic target to mitigate cardiac outcomes in cancer survivors.

20.
J Ovarian Res ; 15(1): 120, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324187

RESUMO

A leading theory for ovarian carcinogenesis proposes that inflammation associated with incessant ovulation is a driver of oncogenesis. Consistent with this theory, nonsteroidal anti-inflammatory drugs (NSAIDs) exert promising chemopreventive activity for ovarian cancer. Unfortunately, toxicity is associated with long-term use of NSAIDs due to their cyclooxygenase (COX) inhibitory activity. Previous studies suggest the antineoplastic activity of NSAIDs is COX independent, and rather may be exerted through phosphodiesterase (PDE) inhibition. PDEs represent a unique chemopreventive target for ovarian cancer given that ovulation is regulated by cyclic nucleotide signaling. Here we evaluate PDE10A as a novel therapeutic target for ovarian cancer. Analysis of The Cancer Genome Atlas (TCGA) ovarian tumors revealed PDE10A overexpression was associated with significantly worse overall survival for patients. PDE10A expression also positively correlated with the upregulation of oncogenic and inflammatory signaling pathways. Using small molecule inhibitors, Pf-2545920 and a novel NSAID-derived PDE10A inhibitor, MCI-030, we show that PDE10A inhibition leads to decreased ovarian cancer cell growth and induces cell cycle arrest and apoptosis. We demonstrate these pro-apoptotic properties occur through PKA and PKG signaling by using specific inhibitors to block their activity. PDE10A genetic knockout in ovarian cancer cells through CRISP/Cas9 editing lead to decreased cell proliferation, colony formation, migration and invasion, and in vivo tumor growth. We also demonstrate that PDE10A inhibition leads to decreased Wnt-induced ß-catenin nuclear translocation, as well as decreased EGF-mediated activation of RAS/MAPK and AKT pathways in ovarian cancer cells. These findings implicate PDE10A as novel target for ovarian cancer chemoprevention and treatment.


Assuntos
Neoplasias Ovarianas , beta Catenina , Feminino , Humanos , Anti-Inflamatórios não Esteroides/farmacologia , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...